

	
		
			
				
					A Technical Journey With Hyperion

				
	
							
														
										
						
					
					
										
				
		
			

		

	

	
		
			
				
					Toggle navigation
					
					
					
					
									EPM Marshall
					
			

			
				
						About Brian
	Stuff Brian Uses
	The Lab

				

			

		

	

	
		
		[image:]		
	PBCS Backups with PowerShell: Part 1
I’ve spent a lot of time lately on homelab topics, so I thought I would take a break and put together a post on an EPM topic! Today we’ll be talking about PBCS backups.

Why Do We Need PBCS Backups

You might be thinking, “Why do I need PBCS backups when Oracle does that for me?” That’s an excellent question. The problem is that while Oracle does perform nightly backups of PBCS, they overwrite that backup each night. So at any given time I only have one backup. To make things even worse, Oracle has a size limit on your PBCS instance. That limit is 150GB. This means that even if we had multiple backups on our pod, we’ll eventually start losing them to the data retention policies.

So what do we do? We generate a new backup every night and download it to a local server. The good news is that you almost certainly have a local server already running EPM Automate. EPM Automate is the automation tool for Oracle’s EPM Cloud suite. You can use EPM Automate to load data, execute calculations, update meta-data, and…perform backups. So, we’ve established that we likely need more than a single night of backups, but how many do we need? This will depend on a few things like the size of your applications and the frequency of change. For our example, we will keep 30 days of daily backups.

Batch vs. PowerShell

Now that we have determined what we are backing up and how many backups we need to keep, we need to move on to actually performing the backups. With EPM Automate, we have two commonly used options. First, we have the old-school method of a batch file. Batch files are great because they just work and you can find a ton of information on the web about how to do things. Batch are, however, very limited in their ability to do things like e-mail notifications and remote calls without external tools. That brings us to PowerShell. PowerShell is essentially a batch that has the full set of .NET programming capability along with other goodies not directly from .NET. What does that mean exactly? That means there is very little I can’t do in PowerShell.

Directory Configuration

Before we configure anything, we need to get a folder structure put together to support scripting, logging, and the actual backup files. You may already have a structure for your automation processes, but for our example, it will look something like this:

	C:\Oracle
	C:\Oracle\Automation
	C:\Oracle\Automation\Backup
	C:\Oracle\Automation\Log

EPM Automate Configuration

EPM Automate is a great tool, but we do need to perform a little bit of setup to get going. For instance, while EPM Automate supports plain text passwords, that wouldn’t pass muster with most IT security groups. So before we get into PowerShell, let’s encrypt our password. This is a fairly easy process. We’ll start up a command prompt and change directory to our EPM Automate bin directory:

cd\
cd Oracle\EPM_Automate\bin

Once we are in the right directory, we can encrypt our password:

epmautomate.bat encrypt YourPasswordGoesHere PickYourKey c:\Oracle\Automation\password.epw

Here are the parameters:

	Command – the command EPM Automate will execute
	encrypt

	Password – the password of the account you plan to use
	YourPasswordGoesHere

	Key – you specify anything you want to use to encrypt the password
	PickYourKey

	Password File – The full path and file name of the password file that will be generated
	c:\Oracle\Automation\password.epw

Once we execute the command, we should have our password file so that we can continue. It should look something like this:

[image:]

Backing Up PBCS with PowerShell

For our first part of this mini-series, we’ll stick with just a basic backup that deletes older backups. In our next part of the series, we’ll go deeper into error handling and notifications. Here’s the code..

Path Variables

#Path Variables
$EpmAutomatePath = "C:\Oracle\EPM_Automate\bin\epmautomate.bat"
$AutomationPath = "C:\Oracle\Automation"
$LogPath = "C:\Oracle\Automation\Log"
$BackupPath = "C:\Oracle\Automation\Backup"

We’ll start by defining our path variables. This will include paths to EPM Automate, our main automation directory, our log path, and our backup path.

Date Variables

#Date Variables
$DaysToKeep = "-30"
$CurrentDate = Get-Date
$DatetoDelete = $CurrentDate.AddDays($DaysToKeep)
$TimeStamp = Get-Date -format "yyyyMMddHHmm"
$LogFileName = "Backup" + $TimeStamp + ".log"

Next we’ll define all of our data related variables. This includes our days to keep (which is negative on purpose as we are going back in time), our current date, the math that gets us back to our deletion period, a timestamp that will be used for various things, and finally our log file name based on that timestamp.

PBCS Variables

#PBCS Variables
$PBCSdomain = "yourdomain"
$PBCSurl = "https://usaadmin-test-yourdomain.pbcs.us2.oraclecloud.com"
$PBCSuser = "yourusername"
$PBCSpass = "c:\Oracle\Automation\password.epw"

Now we need to set our PBCS variables. This will include our domain, the URL to our instance of PBCS, the username we’ll use to log in, and the path to the password file that we just finished generating.

Snapshot Variables

#Snapshot Variables
$PBCSExportName = "Artifact Snapshot"
$PBCSExportDownloadName = $PBCSExportName + ".zip"
$PBCSExportRename = $PBCSExportName + $TimeStamp + ".zip"

We’re nearing the end of variables as we define our snapshot specific variables. These variables will tell us the name of our export, the name of the file that we are downloading based on that name, and the new name of our snapshot that will include our timestamp.

Start Logging

#Start Logging
Start-Transcript -path $LogPath\$LogFileName

I like to log everything so that if something does go wrong, we have a chance to figure it out after the fact. This uses the combination of our log path and log file name variables.

Log Into PBCS

#Log into PBCS
Write-Host ([System.String]::Format("Login to source: {0}", [System.DateTime]::Now))
&$EpmAutomatePath "login" $PBCSuser $PBCSpass $PBCSurl $PBCSdomain

We can finally log into PBCS! We’ll start by displaying our action and the current system time. This way we can see how long things take when we look at the log file. We’ll then issue the login command using all of our variables.

Create the Snapshot

#Create PBCS snapshot
Write-Host ([System.String]::Format("Export snapshot from source: {0}", [System.DateTime]::Now))
&$EpmAutomatePath exportsnapshot $PBCSExportName

Again we’ll display our action and current system time. We then kick off the snapshot process. We do this because we want to ensure that we have the most recent snapshot for our archiving purposes.

Download the Snapshot

#Download PBCS snapshot
Write-Host ([System.String]::Format("Download snapshot from source: {0}", [System.DateTime]::Now))
&$EpmAutomatePath downloadfile $PBCSExportName

Once the snapshot has been created, we’ll move on to downloading the snapshot after we display our action and current system time.

Archive the Snapshot

#Rename the file using the timestamp and move the file to the backup path
Write-Host ([System.String]::Format("Rename downloaded file: {0}", [System.DateTime]::Now))
Move-Item $AutomationPath\$PBCSExportDownloadName $BackupPath\$PBCSExportRename

Once the file has been downloaded, we can then archive the snapshot to our backup folder as we rename the file.

Delete Old Snapshots

#Delete snapshots older than $DaysToKeep
Write-Host ([System.String]::Format("Delete old snapshots: {0}", [System.DateTime]::Now))
Get-ChildItem $BackupPath -Recurse | Where-Object { $_.LastWriteTime -lt $DatetoDelete } | Remove-Item

Now that we have everything archived, we just need to delete anything older than our DateToDelete variable.

Log Out of PBCS

#Log out of PBCS
Write-Host ([System.String]::Format("Logout of source: {0}", [System.DateTime]::Now))
&$EpmAutomatePath "logout"

We’re almost done and we can now log out of PBCS.

Stop Logging

#Stop Logging
Stop-Transcript

Now that we have completed our process, we’ll stop logging

The Whole Shebang

#Path Variables
$EpmAutomatePath = "C:\Oracle\EPM_Automate\bin\epmautomate.bat"
$AutomationPath = "C:\Oracle\Automation"
$LogPath = "C:\Oracle\Automation\Log"
$BackupPath = "C:\Oracle\Automation\Backup"

#Date Variables
$DaysToKeep = "-30"
$CurrentDate = Get-Date
$DatetoDelete = $CurrentDate.AddDays($DaysToKeep)
$TimeStamp = Get-Date -format "yyyyMMddHHmm"
$LogFileName = "Backup" + $TimeStamp + ".log"

#PBCS Variables
$PBCSdomain = "yourdomain"
$PBCSurl = "https://usaadmin-test-yourdomain.pbcs.us2.oraclecloud.com"
$PBCSuser = "yourusername"
$PBCSpass = "c:\Oracle\Automation\password.epw"

#Snapshot Variables
$PBCSExportName = "Artifact Snapshot"
$PBCSExportDownloadName = $PBCSExportName + ".zip"
$PBCSExportRename = $PBCSExportName + $TimeStamp + ".zip"

#Start Logging
Start-Transcript -path $LogPath\$LogFileName

#Log into PBCS
Write-Host ([System.String]::Format("Login to source: {0}", [System.DateTime]::Now))
&$EpmAutomatePath "login" $PBCSuser $PBCSpass $PBCSurl $PBCSdomain

#Create PBCS snapshot
Write-Host ([System.String]::Format("Export snapshot from source: {0}", [System.DateTime]::Now))
&$EpmAutomatePath exportsnapshot $PBCSExportName

#Download PBCS snapshot
Write-Host ([System.String]::Format("Download snapshot from source: {0}", [System.DateTime]::Now))
&$EpmAutomatePath downloadfile $PBCSExportName

#Rename the file using the timestamp and move the file to the backup path
Write-Host ([System.String]::Format("Rename downloaded file: {0}", [System.DateTime]::Now))
Move-Item $AutomationPath\$PBCSExportDownloadName $BackupPath\$PBCSExportRename

#Delete snapshots older than $DaysToKeep
Write-Host ([System.String]::Format("Delete old snapshots: {0}", [System.DateTime]::Now))
Get-ChildItem $BackupPath -Recurse | Where-Object { $_.LastWriteTime -lt $DatetoDelete } | Remove-Item

#Log out of PBCS
Write-Host ([System.String]::Format("Logout of source: {0}", [System.DateTime]::Now))
&$EpmAutomatePath "logout"

#Stop Logging
Stop-Transcript

The Results

Once you execute the PowerShell script, you should see something like this:

[image:]

Conclusion

There we have it…a full process for backing up your PBCS instance. The last step would be to set up a scheduled task to execute once a day avoiding your maintenance window.

	
		
		
			 Brian Marshall
			 August 29, 2018		
		

			
			
	
	
		

		[image:]		
	Build a Homelab Dashboard: Part 8, FreeNAS
My posts seem to be getting a little further apart each week… This week, we’ll continue our dashboard series by adding in some pretty graphs for FreeNAS. Before we dive in, as always, we’ll look at the series so far:

	An Introduction
	Organizr
	Organizr Continued
	InfluxDB
	Telegraf Introduction
	Grafana Introduction
	pfSense
	FreeNAS

FreeNAS and InfluxDB

FreeNAS, as many of you know, is a very popular storage operating system. It provides ZFS and a lot more. It’s one of the most popular storage operating systems in the homelab community. If you were so inclined, you could install Telegraf on FreeNAS. There is a version available for FreeBSD and I’ve found a variety of sample configuration files and steps. But…I could never really get them working properly. Luckily, we don’t actually need to install anything in FreeNAS to get things working. Why? Because FreeNAS already has something built in: CollectD. CollectedD will send metrics directly to Graphite for analysis. But wait…we haven’t touched Graphite at all in this series, have we? No…but thanks to InfluxDB’s protocol support for Graphite.

Graphite and InfluxDB

To enable support for Graphite, we have to modify the InfluxDB configuration file. But, before we get to that, we need to go ahead and create our new InfluxDB and provision a user. If you take a look back at part 4 of this series, we cover this in more depth, so we’ll be quick about it now. We’ll start by logging into InfluxDB via SSH:

influx -username influxadmin -password YourPassword

Now we will create the new database for our Graphite statistics and grant access to that database for our influx user:

CREATE DATABASE "GraphiteStats"
GRANT ALL ON "GraphiteStats" TO "influxuser"

And now we can modify our InfluxDB configuration:

sudo nano /etc/influxdb/influxdb.conf

Our modifications should look like this:

[image:]

And here’s the code for those who like to copy and paste:

[[graphite]]
 # Determines whether the graphite endpoint is enabled.
 enabled = true
 database = "GraphiteStats"
 # retention-policy = ""
 bind-address = ":2003"
 protocol = "tcp"
 # consistency-level = "one"

Next we need to restart InfluxDB:

sudo systemctl restart influxdb

InfluxDB should be ready to receive data now.

Enabling FreeNAS Remote Monitoring

Log into your FreeNAS via the web and click on the Advanced tab:

[image:]

Now we simply check the box that reports CPU utilization as a percent and enter either the FQDN or IP address of our InfluxDB server and click Save:

[image:]

Once the save has completed, FreeNAS should start logging to your InfluxDB database. Now we can start visualizing things with Grafana!

FreeNAS and Grafana

Adding the Data Source

Before we can start to look at all of our statistics, we need to set up our new data source in Grafana. In Grafana, hover over the settings icon on the left menu and click on data sources:

[image:]

Next click the Add Data Source button and enter the name, database type, URL, database name, username, and password and click Save & Test:

[image:]

Assuming everything went well, you should see this:

[image:]

Finally…we can start putting together some graphs.

CPU Usage

We’ll start with something basic, like CPU usage. Because we checked the percentage box while configuring FreeNAS, this should be pretty straight forward. We’ll create a new dashboard and graph and start off by selecting our new data source and then clicking Select Measurement:

[image:]

The good news is that we are starting with our aggregate CPU usage. The bad news is that this list is HUGE. So huge in fact that it doesn’t even fit in the box. This means as we look for things beyond our initial CPU piece, we have to search to find them. Fun… But let’s get start by adding all five of our CPU average metrics to our graph:

[image:]

We also need to adjust our Axis settings to match up with our data:

[image:]

Now we just need to set up our legend. This is optional, but I really like the table look:

[image:]

Finally, we’ll make sure that we have a nice name for our graph:

[image:]

This should leave us with a nice looking CPU graph like this:

[image:]

Memory Usage

Next up, we have memory usage. This time we have to search for our metric, because as I mentioned, the list is too long to fit:

[image:]

We’ll add all of the memory metrics until it looks something like this:

[image:]

As with our CPU Usage, we’ll adjust our Axis settings. This time we need to change the Unit to bytes from the IEC menu and enter a range. Our range will not be a simple 0 to 100 this time. This time we set the range from 0 to the amount of ram in your system in bytes. So…if you have 256GB of RAM, its 256*1024*1024*1024 (274877906944):

[image:]

And our legend:

[image:]

Finally a name:

[image:]

And here’s what we get at the end:

[image:]

Network Utilization

Now that we have covered CPU and Memory, we can move on to network! Network is slightly more complex, so we get to use the math function! Let’s start with our new graph and search for out network interface. In my case this is ix1, my main 10Gb interface:

[image:]

Once we add that, we’ll notice that the numbers aren’t quite right. This is because FreeNAS is reporting the number is octets. Now, technically an octet should be 8 bits, which is normally a byte. But, in this instance, it is reporting it as a single bit of the octet. So, we need to multiply the number by 8 to arrive at an accurate number. We use the math function with *8 as our value. We can also add our rx value while we are at it:

[image:]

Now are math should look good and the numbers should match the FreeNAS networking reports. We need to change our Axis settings to bytes per second:

[image:]

And we need our table (again optional if you aren’t interested):

[image:]

And finally a nice name for our network graph:

[image:]

Disk Usage

Disk usage is a bit tricky in FreeNAS. Why? A few reasons actually. One issue is the way that FreeNAS reports usage. For instance, if I have a volume that has a data set, and that data set has multiple shares, free disk space is reported the same for each share. Or, even worse, if I have a volume with multiple data sets and volumes, the free space may be reporting correctly for some, but not for others. Here’s my storage configuration for one of my volumes:

[image:]

Let’s start by looking at each of these in Grafana so that we can see what the numbers tell us. For ISO, we see the following options:

[image:]

So far, this looks great, my ISO dataset has free, reserved, and used metrics. Let’s look at the numbers and compare them to the above. We’ll start by looking at df_complex-free using the bytes (from the IEC menu) for our units:

[image:]

Perfect! This matches our available number from FreeNAS. Now let’s check out df_complex-used:

[image:]

Again perfect! This matches our used numbers exactly. So far, we are in good shape. This is true for ISO, TestCIFSShare, and TestNFS which are all datasets. The problem is that TestiSCSI and WindowsiSCSI don’t show up at all. These are all zVols. So apparently, zVols are not reported by FreeNAS for remote monitoring from what I can tell. I’m hoping I’m just doing something wrong, but I’ve looked everywhere and I can’t find any stats for a zVol.

Let’s assume for a moment that we just wanted to see the aggregate of all of our datasets on a given volume. Well..that doesn’t work either. Why? Two reasons. First, in Grafana (and InfluxDB), I can’t add metrics together. That’s a bit of a pain, but surely there’s an aggregate value. So I looked at the value for df_complex-used for my z8x2TB dataset, and I get this:

[image:]

Clearly 26.4 MB does not equal 470.6GB. So now what? Great question…if anyone has any ideas, let me know, as I’d happily update this post with better information and give credit to anyone that can provide it! In the meantime, we’ll use a different share that only has a single dataset, so that we can avoid this annoying math and reporting issues. My Veeam backup share is a volume with a single dataset. Let’s start by creating a singlestat and pulling in this metric:

[image:]

This should give us the amount of free storage available in bytes. This is likely a giant number. Copy and paste that number somewhere (I chose Excel). My number is 4651271147041. Now we can switch to our used number:

[image:]

For me, this is an even bigger number: 11818579150671, which I will also copy and paste into Excel. Now I will do simple match to add the two together which gives a total of 16469850297712. So why did we go through that exercise in basic math? Because Grafana and InfluxDB won’t do it for us…that’s why. Now we can turn our singlestat into a gauge. We’ll start with our used storage number from above. Now we need to change our options:

[image:]

We start by checking the Show Gauge button and leave the min set to 0 and change our max to the value we calculated as our total space, which in my case is 16469850297712. We can also set thresholds. I set my thresholds to 80% and 90%. To do this, I took my 16469850297712 and multiplied by .8 and .9. I put these two numbers together, separated by a comma and put it in for thresholds: 13175880238169.60,14822865267940.80. Finally I change the unit to bytes from the IEC menu. The final result should look like that:

[image:]

Now we can see how close we are to our max along with thresholds on a nice gauge.

CPU Temperature

Now that we have the basics covered (CPU, RAM, Network, and Storage), we can move on to CPU temperatures. While we will cover temps later in an IPMI post, not everyone running FreeNAS will have the luxury of IPMI. So..we’ll take what FreeNAS gives us. If we search our metrics for temp, we’ll find that every thread of every core has its own metric. Now, I really don’t have a desire to see every single core, so I chose to pick the first and last core (0 and 31 for me):

[image:]

The numbers will come back pretty high, as they are in kelvin and multiplied by 10. So, we’ll use our handy math function again (/10-273.15) and we should get something like this:

[image:]

Next we’ll adjust our Axis to use Celsius for our unit and adjust the min and max to go from 35 to 60:

[image:]

And because I like my table:

[image:]

At the end, we should get something like this:

[image:]

Conclusion

In the end, my dashboard looks like this:

[image:]

This post took quite a bit more time than any of my previous posts in the series. I had built my FreeNAS dashboard previously, so I wasn’t expecting it to be a long, drawn out post. But, I felt as I was going through that more explanation was warranted and as such I ended up with a pretty long post. I welcome any feedback for making this post better, as I’m sure I’m not doing the best way…just my way. Until next time…

	
		
		
			 Brian Marshall
			 August 27, 2018		
		

			
			
	
	
		

		[image:]		
	Build a Homelab Dashboard: Part 7, pfSense
After a small break, I’m ready to continue the homelab dashboard series! This week we’ll be looking at pfSense statistics and how we add those to our homelab dashboard. Before we dive in, as always, we’ll look at the series so far:

	An Introduction
	Organizr
	Organizr Continued
	InfluxDB
	Telegraf Introduction
	Grafana Introduction
	pfSense

pfSense and Telegraf

If you are reading this blog post, I’m going to assume you have at least a basic knowledge of pfSense. In short, pfSense is a firewall/router used by many of us in our homelabs. It is based on FreeBSD (Unix) and has many available built-in packages. One of those packages just happens to be Telegraf. Sadly, it also happens to be a really old verison of Telegraf, but more on that later. Having this built in makes it very easy to configure and get up and running. Once we have Telegraf running, we’ll dive into how we visualize the statistics in Grafana, which isn’t quite as straight forward.

Installing Telegraf on pfSense

Installation of Telegraf is pretty easy. As I mentioned earlier, this is one of the many packages that we can easily install in pfSense. We’ll start by opening the pfSense management interface:

[image:]

For most of us, we’re looking at our primary means to access the internet, and as such I would recommend verifying that you are on the latest version before proceeding. Once you have completed that task, you can move on to clicking on System and then Package Manager:

[image:]

Here we can see all of our installed packages. Next we’ll click on Available Packages:

[image:]

If we scroll way down the alphabetical list, we’ll find Telegraf and click the associated install button:

[image:]

Finally, click the Confirm button and watch the installer go:

[image:]

We should see a success message:

[image:]

Now we are ready to configure Telegraf. Click on the Services tab and then click on Telegraf:

[image:]

Ensure that Telegraf is enabled and add in your server name, database name, username, and password. Once you click save, it should start sending statistics over to InfluxDB:

[image:]

pfSense and Grafana

Now that we have Telegraf sending over our statistics, we should be ready to make it pretty with Grafana! But, before we head into Grafana, let’s make sure we understand which interface is which. At the very least, pfSense should have a WAN and a LAN interface. To see which interface is which (if you don’t know offhand), you can click on Interfaces and then Assignments:

[image:]

Once we get to our assignments screen, we can make note of our WAN interface (which is what I care about monitoring). In my case, its em0:

[image:]

Now that we have our interface name, we can head over to Grafana and put together a new dashboard. I’ve started with a graph and selected my TelegrafStats datasource, my table of net, and filtered by my host of pfSense.Hyperion.local and my interface of em0. Then I selected Bytes_Recv for my field:

[image:]

If you’re like me, you might think that you are done with your query. But, if you take a look at the graph, you will notice that you are in fact…not done. We have to use some more advanced features of our query language to figure out what this should really look like. We’ll start with the derivative function. So why do we need this? If we look at the graph, we’ll see that it just continues to grow and grow. So instead of seeing the number, we need to see the change in the number over time. This will give us our actual rate, which is what the derivative function does. It looks at the current value and provides the difference between that value and the value prior. Once we add that, we should start to see a more reasonable graph:

[image:]

Our final query should look like this:

[image:]

Next we can go to our axes settings and set it to bytes/sec:

[image:]

Finally, I like to set up my table-based legend:

[image:]

Now let’s layer in bytes_sent by duplicating our first query:

[image:]

And our final bandwidth graph should look like this:

[image:]

Confirming Our Math

I spent a lot of time making sure I got the math right and the query, but just to check, here’s a current graph from pfSense:

[image:]

This maxes out at 500 megabits per second. Now let’s check the same time period in Grafana:

[image:]

If we convert 500 megabits to megabytes by dividing by 8, we get 62.5. So…success! The math checks out! This also tells me that my cable provider upgraded my from 400 megabit package to 500 megabit.

Conclusion

You should be able to follow my previous guide for CPU statistics. One thing you may notice is that there are no memory statistics for your pfSense host. This is a bug that should be fixed at some point, but I’m on the latest version and it still hasn’t been fixed. I’ve yet to find a decent set of steps to fix it, but if I do, or it becomes fixed with a patch, I’ll update this post! Until next time…when we check out FreeNAS.

	
		
		
			 Brian Marshall
			 August 10, 2018		
		

			
			
	
	
		

		[image:]		
	Build a Homelab Dashboard: Part 6, Grafana Introduction
Another week, another part of the homelab dashboard series! This week we will finally bring all of our work into Grafana so that we can see some pretty pictures. Before we dive in, let’s take a look at the series so far:

	An Introduction
	Organizr
	Organizr Continued
	InfluxDB
	Telegraf Introduction
	Grafana Introduction

What is Grafana?

Grafana is the final piece of our TIG stack. This is the part you’ve been waiting for, as it provides the actual results of our labors in the form of beautiful dashboards. Like Telegraf and InfluxDB, Grafana is also open source, which makes it even more awesome. Grafana really does two things, first it build (or allows you to build) a query back to a data source. In our case, this means building an InfluxQL query. Once the query has been prepared, Grafana then gives you the ability to make it look nice…very nice. Let’s get started!

[image:]

Installing Grafana on Linux

Installation, like everything else we’ve installed so far in this series is pretty straight forward. We’ll start by downloading and installing Grafana using these commands:

sudo wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana_5.2.2_amd64.deb
sudo dpkg -i grafana_5.2.2_amd64.deb

Executing those commands should look something like this:

[image:]

Now we need to start the service:

sudo service grafana-server start

Finally we need to make sure the service starts automatically at boot each time:

sudo systemctl enable grafana-server.service

Installation complete…now let’s do some configuration.

Configuring Grafana

We’ll start by opening our browser and going to http://youripaddressorhostname:3000/:

[image:]

The default username and password for the administrator account will be admin. Once logged in, we will be prompted to change our password. I highly recommend that you do not click the skip button:

[image:]

Once you are logged in, we’ll see that we’ve only completed the first step in the five that they have listed:

	Install Grafana
	Add data source
	Create your dashboard
	Invite your team
	Install apps & plugins

We’ll focus on the first three as its assumed that this is a homelab where you don’t have a lot of users and for now won’t need any apps or plugins. Now we can move on to the next step.

Adding a Data Source

Now that we have Telegraf feeding stats to InfluxDB, we can start with that database as our source. Start by clicking on Add data source:

[image:]

Enter a name for the data source, choose InfluxDB for the type, enter the URL (I used localhost as I have it all on the same system), enter the name of the database, enter the username and password used to access the database. Finally, click Save & Test:

[image:]

Assuming everything went well, you should see the following:

[image:]

Creating a Dashboard

Finally…after six parts of this series, we are to a point where we get to see a pretty picture. The moment we have all been waiting for! While I could just upload my JSON file for this dashboard, I learn much better if I actually go through and build it myself. So we’ll go that route. If we go back to our home dashboard, we can click on the next box:

[image:]

Simple Line Graph

We’ll start with something simple, so we’ll click on Graph:

[image:]

This will give you a nice looking random sample data graph:

[image:]

While this is cool looking, it wasn’t exactly intuitive that you click on the panel title to get editing options:

[image:]

Once you’ve clicked edit, you should have a full screen of editing options. We’ll start by changing the data source to our newly created data source, TelegrafStats in my case:

[image:]

Now we need to pick a table to pull data from. We’ll start with something that seems simple like CPU statistics from the cpu table:

[image:]

Next we’ll add host to our where clause so that we don’t try to aggregate multiples as we add in future devices:

[image:]

And now we need to specify the host we wish to filter on:

[image:]

Finally, we can select a field. In some cases, this will a single value of interest. As we look at CPU options, we’ll notice that there are quite a few to select from. This will vary based on the operating system that we are using, but in my case (Debian Stretch), I have a lot of choices. We’ll start by picking a single item from the list:

[image:]

Before we get into the rest of our CPU options, let’s give our series a name:

[image:]

Given that we have all of these choices, we really need all of them on the graph to adequately illustrate CPU utilization. To make this a faster process, we’ll simply duplicate our first entry. We’ll click the menu button on the query and select Duplicate:

[image:]

We’ll do this for every field available so that we can represent all of the possible ways our CPU will be utilized. Now that we’ve added all of our data, its time to make things look a little more polished. We’ll start with our legend. Click on the Legend tab:

[image:]

I prefer to see more information on my legend. Grafana gives us a great selection of options. I’ve chosen to display my legend as a table with min, max, avg, and current values:

[image:]

Next we’ll click on our General tab so that we can adjust our title:

[image:]

The only thing left to do now is to adjust a few settings about our axes. From the Axes tab, we’ll select the unit of none followed by the unit of percent (0-100):

[image:]

Now that we have it set to percent, we’ll also want to set the range from 0 to 100 as our usage should never exceed 100:

[image:]

Next we need to click back and actually save our work. Up until this point, nothing we have done has been saved. Once we have clicked the back button in the top right corner, we should see our completed panel and we’re ready to click the save button:

[image:]

Now we just need to enter a name for the new dashboard and click Save:

[image:]

We have officially created our first dashboard in Grafana! But wait, that will be a pretty boring dashboard. Let’s add some memory and disk metrics next. To do this, we’ll use a different type of visualization.

Singlestat (Gauge)

Everyone loves pretty gauges, so let’s add one or two of those to our dashboard. To create a gauge we add a new panel:

[image:]

The Singlestat panel can be modified the same way as our graph:

[image:]

Now we modify our query just like we did with a graph and then we’ll go to the options tab:

[image:]

We’re going to first change our stat. Essentially we want to change it from the default of Average to the setting of Current. This ensures that our gauge will always show the most recent value rather than an average of the time period selected. We also need to change our thresholds, I chose 70 and 90 for my orange and red. We’ll also set our gauge to Show and set our units to percent. If your colors are reversed, just click the Invert button:

[image:]

Once we have our gauge configured, we just need to name our panel:

[image:]

One More SingleStat

I won’t go step by step, but here are the settings I used for the disk space gauge:

[image:]

The Dashboard

Finally, we have a dashboard. I moved things around a bit and ended up with this:

[image:]

Putting It All Together

Now that we have a dashboard, we should be ready to put it all together. This means all the way back to Organizr. Before we head over there, we need to copy a link. Click on the share button:

[image:]

Next we will deselect Current time range and Template variables. Finally we’ll copy the link:

[image:]

We’ll head back over the Organizr and go to our Tab Editor and click the add new tab button:

[image:]

Now we just need to name our tab, paste our URL, and choose the Grafana logo:

[image:]

And once we reload Organizr, here we go:

[image:]

Conclusion

If you have followed the entire series so far, you should have a fully functionally dashboard inside of Organizr. Soup to nuts as promised. We’ll continue the series by adding in more and more devices and data into InfluxDB and Grafana…another day.

	
		
		
			 Brian Marshall
			 July 30, 2018		
		

			
			
	
	
		

		[image:]		
	Build a Homelab Dashboard: Part 5, Telegraf Introduction
As we continue on our homelab dashboard journey, we’re ready to start populating our time-series database (InfluxDB) with some actual data. To do this, we’ll start by installing Telegraf. But, before we dive in, let’s take a at the series so far:

	An Introduction
	Organizr
	Organizr Continued
	InfluxDB
	Telegraf Introduction

What is Telegraf

In part 1 of this series, I gave a brief overview of Telegraf, but as we did with InfluxDB in our last post, let’s dig a little deeper. Telegraf is a server agent designed to collect and report metrics. We’ll look at Telegraf from two perspectives. The first perspective is using Telegraf to gather statistics about the server on which it has been installed. This means that Telegraf will provide us data like CPU usage, memory usage, disk usage, and the like. It will take that data and send it over to our InfluxDB database for storage and reporting.

[image:]

The second perspective is using Telegraf to connect to other external systems and services. For instance, we can use Telegraf to connect to a Supermicro system using IPMI or to a UPS using SNMP. Each of these sets of connectivity represents an input plugins The list of plugins is extensive and far too long to list. We’ll cover several of the plugins in future posts, but today we’ll focus the basics. Before we get into the installation, let’s take see what this setup looks like in the form of a diagram:

[image:]

Looking at the diagram, we’ll see that we have our monitoring server with InfluxDB, Telegraf, and Grafana. Next we have a couple of examples of systems running the Telegraf agent on both Windows and FreeBSD. Finally, we have the other “things” box. This includes our other devices that Telegraf monitors without needing to actually be installed. The coolest part about Telegraf for my purposes is that it seems to work with almost everything in my lab. The biggest miss here is vmWare, which does not have a plugin yet. I’m hoping this changes in the future, but for now, we’ll find another way to handle vmWare.

Installing Telegraf on Linux

We’ll start by installing Telegraf onto our monitoring server that we started configuring way back in part 2 of this series. First we’ll log into our Linux box using PuTTY:

[image:]

Next, we’ll download the software using the following commands:

sudo wget https://dl.influxdata.com/telegraf/releases/telegraf_1.7.1-1_amd64.deb
sudo dpkg -i telegraf_1.7.1-1_amd64.deb

The download and installation should look something like this:

[image:]

Much like our InfluxDB installation…incredibly easy. It’s actually even easier than InfluxDB in that the service should already be enabled and running. Let’s make sure:

sudo systemctl status telegraf

Assuming everything went well we should see “active (running)” in green:

[image:]

Now that we have completed the installation, we can move on to configuration.

Configuring Telegraf

For the purposes of this part of the series, we’ll just get the basics set up. In future posts we’ll take a look at all of the more interesting things we can do. We’ll start our configuration by opening the config file in nano:

sudo nano /etc/telegraf/telegraf.conf

We mentioned input plugins earlier as it related to getting data, but now we’ll look at output plugins to send data to InfluxDB. We’ll uncomment and change the lines for urls, database, timeout, username, and password:

[image:]

Save the file with Control-O and exit with Control X. Now we can restart the service so that our changes will take effect:

sudo systemctl restart telegraf

Now let’s log in to InfluxDB make sure we are getting data from Telegraf. We’ll use this command:

influx -username 'influxuser' -password 'influxuserpassword' -database 'TelegrafStats'

Once logged in, we can execute a command to see if we have any measurements:

SHOW MEASUREMENTS

This should all look something like this:

[image:]

By default, the config file has settings ready to go for the following:

	CPU
	Disk
	Disk IO
	Kernel
	Memory
	Processes
	Swap
	System

These will be metrics only for the system on which we just installed Telegraf. We can also take a look at the data just to get a look before we make it over to Grafana:

SELECT * FROM cpu LIMIT 5

This should show us 5 records from our cpu table:

[image:]

Conclusion

With that, we have completed our configuration and will be ready to move on to visualizations using Grafana…in our next post.

	
		
		
			 Brian Marshall
			 July 23, 2018		
		

			
			
	
	
		

		[image:]		
	PowerShell from Workspace: Better Than a Batch
There are no less than three blog posts about running a batch script from Workspace floating around the internet. I believe the first originated from Celvin here. While this method works great for executing a batch, you are still stuck with a batch. Not only that, but if you update that batch, you have to go through the process of replacing your existing batch. This sounds easy, but if you want to keep your execution history, it isn’t. Today we’ll use a slightly modified version of what Celvin put together all those years ago. Instead of stopping with a batch file, we’ll execute PowerShell from Workspace.

Introduction to PowerShell

In short, PowerShell is a powerful shell built into most modern versions of Windows (both desktop and server) meant to provide functionality far beyond your standard batch script. Imagine a world where you can combine all of the VBScript that you’ve linked together with your batch scripts. PowerShell is that world. PowerShell is packed full of scripting capabilities that make things like sending e-mails no longer require anything external (except a mail server of course). Basically, you have the power of .NET in batch form.

First an Upgrade

We’ll start out with a basic batch, but if you look around at all of the posts available, none of them seem to be for 11.1.2.4. So, let’s take his steps and at least give them an upgrade to 11.1.2.4. Next, we’ll extend the functionality beyond basic batch files and into PowerShell. First…the upgrade.

Generic Job Applications

I’ll try to provide a little context along with my step-by-step instructions. You are probably thinking…what is a Generic Job Application? Well, that’s the first thing we create. Essentially we are telling Workspace how to execute a batch file. To execute a batch file, we’ll use cmd.exe…just like we would in Windows. Start by clicking Administer, then Reporting Settings, and finally Generic Job Applications:

[image:]

This will bring up a relatively empty screen. Mine just has BrioQuery (for those of you that remember what that means…I got a laugh). To create a new Generic Job Application, we have to right-click pretty much anywhere and click Create new Generic Application:

[image:]

For product name, we’ll enter Run_Batch (or a name of your choosing). Next we select a product host which will be your R&A server. Command template tells Workspace how to call the program in question. In our case we want to call the program ($PROGRAM) followed by any parameters we wish to define ($PARAMS). All combined, our command template should read $PROGRAM $PARAMS. Finally we have our Executable. This will be what Workspace uses to execute our future job. In our case, as preiovusly mentioned, this will be the full path to cmd.exe (%WINDIR%\System32\cmd.exe). We’ll click OK and then we can move on to our actual batch file:

[image:]

The Batch

Now that we have something to execute our job, we need…our job. In this case we’ll use a very simple batch script with just one line. We’ll start by creating this batch script. The code I used is very simple…call PowerShell script:

%WINDIR%\system32\WindowsPowerShell\v1.0\powershell.exe e:\data\PowerShellTest.ps1

So, why don’t I just use my batch file and perform all of my tasks? Simple…PowerShell is unquestionably superior to a batch file. And if that simple reason isn’t enough, this method also let’s us separate the job we are about to create from the actual code we have to maintain in PowerShell. So rather than making changes and having to figure out how to swap out the updated batch, we have this simple batch that calls something else on the file system of the reporting server. I’ve saved my code as BatchTest.bat and now I’m ready to create my job.

The Job

We’ll now import our batch file as a job. To do this we’ll go to Explore, find a folder (or create a folder) that we will secure for only people that should be allowed to execute our batch process. Open that folder, right-click, and click Import and then File As Job…:

[image:]

We’ll now select our file (BatchTest.bat) and then give our rule a name (PowerShellTest). Be sure to check Import as Generic Job and click Next:

[image:]

Now we come full circle as we select Run_Batch for our Job Factory Application. Finally, we’ll click finish and we’re basically done:

[image:]

Simple PowerShell from Workspace

Wait! We’re not actually done! But we are done in Workspace, with the exception of actually testing it out. But before we test it out, we have to go create our PowerShell file. I’m going to start with a very simple script that simple writes the username currently executing PowerShell to the screen. This let’s us do a few things. First, it let’s you validate the account used to run PowerShell. This is always handy to know for permissions issues. Second, it let’s you make sure that we still get the output of our PowerShell script inside of Workspace. Here’s the code:

$User = [System.Security.Principal.WindowsIdentity]::GetCurrent().Name
Write-Output $User

Now we need to make sure we put this file in the right place. If we go back up to the very first step in this entire process, we select our server. This is the server that we need to place this file on. The reference in our batch file above will be to a path on that system. In my case, I need to place the file into e:\data on my HyperionRP24 server:

[image:]

Give it a Shot

With that, we should be able to test our batch which will execute PowerShell from Workspace. We’ll go to Explore and find our uploaded job, right-click, and click Run Job:

[image:]

Now we have the single option of output directory. This is where the user selects where to place the log file of our activities essentially. I choose the logs directory that I created:

[image:]

If all goes according to plan, we should see a username:

[image:]

As we can see, my PowerShell script was executed by Hyperion\hypservice which makes sense as that’s my Hyperion service used to run all of the Hyperion services.

Now the Fun

We have successfully recreated Celvin’s process in 11.1.2.4. Now we are ready to extend his process further with PowerShell. We already have our job referencing our PowerShell script stored on the server, so anything we choose to do from here on out can be independent of Hyperion. And again, running PowerShell from Workspace gives us so much more functionality, we may as well try some of it out.

One Server or Many?

In most Hyperion environments, you have more than one server. If you have Essbase, you probably still have a foundation server. If you have Planning, you might have Planning, Essbase, and Foundation on three separate machines. The list of servers goes on and on in some environments. In my homelab, I have separate virtual machines for all of the major components. I did this to try to reflect what I see at most clients. The downside is that I don’t have everything installed on every server. For instance, I don’t have MaxL on my Reporting Server. I also don’t have the Outline Load Utility on my Reporting Server. So rather than trying to install all of those things on my Reporting Server, some of which isn’t even supporting, why not take advantage of PowerShell. PowerShell has the built-in capability to execute commands on remote servers.

Security First

Let’s get started by putting our security hat on. We need to execute a command remotely. To do so, we need to provide login credentials for that server. We generally don’t want to do this in plain text as somebody in IT will throw a flag on the play. So let’s fire up PowerShell on our reporting server and encrypt our password into a file using this command:

read-host -prompt "Password?" | ConvertTo-SecureString -AsPlainText -Force | ConvertFrom-SecureString | Out-File "PasswordFile.pass"

This command requires that you type in your password which is then converted to a SecureString and written to a file. It’s important to note that this encrypted password will only work on the server that you use to perform the encryption. Here’s what this should look like:

[image:]

If we look at the results, we should have an encrypted password:

[image:]

Now let’s build our PowerShell script and see how we use this password.

Executing Remotely

I’ll start with my code which executes another PowerShell command on our remote Essbase Windows Server:

###
#Created By:	Brian Marshall
#Created Date:	7/19/2018
#Purpose:		Sample PowerShell Script for EPMMarshall.com
###

###
#Variable Assignment
###
#Define the username that we will log into the remote server
$PowerShellUsername = "Hyperion\hypservice"
#Define the password file that we just created
$PowerShellPasswordFile = "E:\Data\PasswordFile.pass"
#Define the server name of the Essbase server that we will be logging into remotely
$EssbaseComputerName = "HyperionES24V"
#Define the command we will be remotely executing (we'll create this shortly)
$EssbaseCommand = {E:\Data\RemoteSample\RemoteSample.ps1}

###
#Create Credential for Remote Session
###
$PowerShellCredential=New-Object -TypeName System.Management.Automation.PSCredential -ArgumentList $PowerShellUsername, (Get-Content $PowerShellPasswordFile | ConvertTo-SecureString)

###
#Create Remote Session Using Credential
###
$EssbaseSession = New-PSSession -ComputerName $EssbaseComputerName -credential $PowerShellCredential

###
#Invoke the Remote Job
###
$EssbaseJob = Invoke-Command -Session $EssbaseSession -Scriptblock $EssbaseCommand 4>&1
echo $EssbaseJob

###
#Close the Remote Session
###
Remove-PSSession -Session $EssbaseSession

Basically we assign all of our variables, including the use of our encrypted password. Then we create a credential using those variables. We then use that credential to create a remote session on our target Essbase Windows Server. Next we can execute our remote command and write out the results to the screen. Finally we close out our remote connection. But wait…what about our remote command?

Get Our Remote Server Ready

Before we can actually remotely execute on a server, we need to start up PowerShell on that remove server and enable remote connectivity in PowerShell. So…log into your remote server and start PowerShell, and execute this command:

Enable-PSRemoting -Force

If all goes well, it should look like this:

[image:]

If all doesn’t go well, make sure that you started PowerShell as an Administrator. Now we need to create our MaxL script and our PowerShell script that will be remotely executed.

The MaxL

First we need to build a simple MaxL script to test things out. I will simply log in and out of my Essbase server:

login $1 identified by $2 on $3;

logout;

The PowerShell

Now we need a PowerShell script to execute the MaxL script:

###
#Created By:	Brian Marshall
#Created Date:	7/19/2018
#Purpose:		Sample PowerShell Script for EPMMarshall.com
###

###
#Variable Assignment
###

$MaxLPath = "E:\Oracle\Middleware\user_projects\Essbase1\EssbaseServer\essbaseserver1\bin"
$MaxLUsername = "admin"
$MaxLPassword = "myadminpassword"
$MaxLServer = "hyperiones24v"

###
#MaxL Execution
###
& $MaxLPath\StartMaxL.bat E:\Data\RemoteSample\RemoteSample.msh $MaxLUsername $MaxLPassword $MaxLServer

This is as basic as we can make our script. We define our variables around usernames and servers and then we execute our MaxL file that logs in and out.

Test It First

Now that we have that built, let’s test it from the Essbase Windows Server first. Just fire up PowerShell and go to the directory where you file exists and execute it:

[image:]

Assuming that works, now let’s test the remote execution from our reporting server:

[image:]

Looking good so far.. Now let’s head back to Workspace to see if we are done:

[image:]

Conclusion

That’s it! We have officially executed a PowerShell script which remotely executes a PowerShell script which executes a MaxL script…from Workspace. And the best part is that we get to see all of the results from Workspace and the logs are stored there until we delete them. We can further extend this to do things like load dimensions using the Outline Load Utility or using PowerShell to send e-mail confirmations. The sky is the limit with PowerShell!

	
		
		
			 Brian Marshall
			 July 19, 2018		
		

			
			
	
	
		

		[image:]		
	Build a Homelab Dashboard: Part 4, InfluxDB
Now that we have our foundation laid with a fresh installation of Debian and Organizr, we can now move on to the data collection portion of our dashboard. After all, we have to get the stats about our homelab before we can make them into pretty pictures. Before we can go get the stats, we need a place to put them. For this, we’ll be using the open source application InfluxDB. Before we dive in, let’s take a at the series so far:

	Part 1, An Introduction
	Part 2, Organizr
	Part 3, Organizr Continued
	Part 4, InfluxDB

What is InfluxDB?

In part 1 of this series, I gave a brief overview of InfluxDB, but let’s dig a little deeper. At the very basic level, InfluxDB is a time-series database for storing events and statistics. The coolest part about InfluxDB is the HTTP interface that allows virtually anything to write to it. Over the next several posts we’ll see Telegraf, PowerShell, and Curl as potential clients to write back to InfluxDB. You can download InfluxDB directly from GitHub where it is updated very frequently. It supports authentication with multiple users and levels of security and of course multiple databases.

[image:]

Installing InfluxDB

Installing InfluxDB is a pretty easy operation. We’ll start by logging into our Linux box using PuTTY:

[image:]

We’ll issue this command (be sure to check here for the latest download link):

sudo wget https://dl.influxdata.com/influxdb/releases/influxdb_1.5.4_amd64.deb
sudo dpkg -i influxdb_1.5.4_amd64.deb

The download and installation should look something like this:

[image:]

Almost too easy, right? I think that’s the point! InfluxDB is meant to be completely dependency free. Let’s make sure everything really worked by enabling the service, starting the service, and checking the status of the service:

sudo systemctl enable influxdb
sudo systemctl start influxdb
systemctl status influxdb

If all went well, we should see that the service is active and running:

Configuring InfluxDB

We’ll stay in PuTTY to complete much of our configuration. Start influx:

influx

This should start up our command line interface for InfluxDB:

[image:]

Authentication

By default, InfluxDB does not require authentication. So let’s fix that by first creating an admin account so that we can enable authentication:

CREATE USER "influxadmin" WITH PASSWORD 'influxadminpassword' WITH ALL PRIVILEGES
exit

You’ll notice that it isn’t terribly verbose:

[image:]

Once we have our user created, we should be ready to enable authentication. Let’s fire up nano and modify the configuration file:

 sudo nano /etc/influxdb/influxdb.conf

Scroll through the file until you find the [http] section and set auth-enabled to true:

[image:]

Write out the file with control-o and exit with control-x and you should be ready to restart the service:

sudo systemctl restart influxdb

Now we can log back in using our newly created username and password to make sure that things work:

[image:]

Create Databases

The final steps are to create a few databases finally a user to access them. You can just use the admin use you created, but generally its better to have a non-admin account:

CREATE DATABASE "TelegrafStats"
CREATE DATABASE "vmWareStats"
CREATE DATABASE "PowerShellStats"

I created three databases for my setup. One for use with Telegraf, one to store various vmWare specific metrics, and one for all of the random stuff I like to do with PowerShell. All of these will get their own set of blog posts in time.

Grant Permissions

Finally, we can create our user or users and grant access to the newly created databases:

CREATE USER "influxuser" WITH PASSWORD 'influxuserpassword'
GRANT ALL ON "TelegrafStats" TO "influxuser"
GRANT ALL ON "vmWareStats" TO "influxuser"
GRANT ALL ON "PowerShellStats" TO "influxuser"

Again…not terribly verbose:

[image:]

Retention

By default, when you create a database in InfluxDB, it sets the retention to infinite. For me, being a digital packrat, this is exactly what I want. So I’m going to leave my configuration alone. But…for everyone else, you can find a guide on retention and downsampling here in the official InfluxDB documention. You can find the specific command details here.

Conclusion

That’s it! InfluxDB is now ready to receive information. In our next post, we’ll move on to Telegraf so that we can start sending it some data!

Version Update

When this blog post was written, InfluxDB 1.5.4 was the latest release. Before I was able to publish this blog post, InfluxDB 1.6 was released. Feel free to install that version instead of the version above:

sudo wget https://dl.influxdata.com/influxdb/releases/influxdb_1.6.0_amd64.deb
sudo dpkg -i influxdb_1.6.0_amd64.deb

	
		
		
			 Brian Marshall
			 July 16, 2018		
		

			
			
	
	
		

		[image:]		
	Homelab Software Licensing
I frequent /r/homelab and recently I’ve read a number of posts regarding how to get licensing for your homelab. Obviously, there are plenty of unscrupulous ways to get access to software, but I prefer to keep everything on my home network legit. So, how do you do that? Software licensing is somewhat difficult for regular software and it isn’t any easier for a homelab. We’ll talk through how to get low-cost, totally legitimate licensing for vmWare, Microsoft, and a few backup solutions for your homelab. We will not talk about all of the software that you might use in your homelab in general. For instance, we will not cover storage server software like FreeNAS. If you would like to see a great list of things people use in their homelabs, I would suggest checking out the software page of the /r/homelab wiki here.

vmWare Software Licensing

vmWare still offers a free Hypervisor in the form of vmWare vSphere Hypervisor. The downside is that you don’t get a fully featured vmWare experience. Namely, you don’t get access to the API’s. This means much of the backup functionality won’t be available and general management is more difficult without vCenter. The cheapest way to get a production copy of vmWare is through the Essentials packages. The regular package is only $495 and includes a basic version of vCenter along with three server licenses for ESXi (2 sockets per server). It’s not a terrible deal at all, but vCenter is very limited. And for a homelab, who needs production licensing anyway?

[image:]

So we have an option, but it isn’t cheap and doesn’t give us the full stack. Enter VMUG Advantage. For only $200 per year (yes, you have to pay it every year), you get basically everything. VMUG Advantage gives you all of this:

	EVALExperience
	20% Discount on VMware Training Classes
	20% Discount on VMware Certification Exams
	35% Discount on VMware Certification Exam Prep Workshops (VCP-NV)
	35% Discount on VMware Lab Connect
	$100 Discount on VMworld Attendance

All of those things are great, but the very first one is the one that matters. EVALExperience gives us all of the following:

	VMware vCenter Server v6.x Standard
	VMware vSphere® ESXi Enterprise Plus with Operations Management™ (6 CPU licenses)
	VMware NSX Enterprise Edition (6 CPU licenses)
	VMware vRealize Network Insight
	VMware vSAN™
	VMware vRealize Log Insight™
	VMware vRealize Operations™
	VMware vRealize Automation 7.3 Enterprise
	VMware vRealize Orchestrator
	VMware vCloud Suite® Standard
	VMware Horizon® Advanced Edition
	VMware vRealize Operations for Horizon®
	VMware Fusion Pro 10
	VMware Workstation Pro 14

That’s more like it. Granted, we have the on-going annual expense of $200, but you can really go learn every aspect of vmWare with EVALExperience.

Microsoft Software Licensing

Microsoft licensing is about as complex as you can find. Like vmWare, Microsoft offers a free version of their Hypervisor (Hyper-V), but Microsoft has a much broader set of software to offer in general. Once upon a time, we had an inexpensive Technet subscription which gave us the world in evaluation software. This is but a memory at this point so we have to find other options. There are two great options on this front that are perhaps not as inexpensive, but will still give most of us what we need.

Microsoft Action Pack

We’ll start, as we did with vmWare licensing, with production-use licensing. The Microsoft Action Pack is essentially a very low level version of being a Microsoft Partner. It gives you access to a host of software for production use, but doesn’t really have a dev/test option. For a homelab, this is still pretty good, because we get the latest Microsoft software at a fraction of the cost of individual licensing. There are gotchas of course. You do have to renew every year, and the initial fee is $475. If you are lucky, you can find coupons to get that number way down. So what do you get? Here’s a sub-set:

	Office 365 for 5 users
	Windows Server 2016 for 16 cores
	This is basically one server, which Microsoft requires that you purchase 16 cores minimum per physical server
	Even if you physical server is running ESXi, you must have a Windows License if you are going to run a Windows VM
	This license only allows you to run 2 Windows VM per physical host
	You must purchase 16 core licenses per 2 VM’s you need per physical host

	SQL Server 2017 for 2 servers (10 CALs)
	Office 2016 Professional Plus for 10 computers
	Visual Studio Professional for 3 users
	Plenty of other great software like SharePoint, Exchange, etc.

But wait…there’s a downside. First, those are all current versions of the software. Many of us are forced to work with older version of Windows and SQL Server for our internal testing an development. So this doesn’t work great. Second, these are again, production licenses. So we are paying a very low price, but this is software intended for a business to operate. It’s a great deal, but not the best fit for every homelab. You can find a full list of software included here. I’ve had this subscription for years, but let’s move on to another option.

Visual Studio Subscriptions

So Technet is dead and the Action Pack isn’t for everyone…never fear, there is another option: Visual Studio Subscriptions. This is really designed for a developer and is the new branding of what was once an MSDN Subscription. The good new is that many of us with a homelab use software more like a developer anyway. So with the right subscription, we get access to basically everything, unlimited, for development and testing purposes. Of course, everything is expensive, so we have to find the right software selection at a price that we can afford. There are two main flavors of Visual Studio Subscriptions: Cloud and Standard.

[image:]

Cloud

Cloud is sold as a monthly or annual subscription. You only get to use the license keys while you are paying the subscription. The annual option includes subscriber benefits while the monthly service basically just includes Visual Studio-related software. So what are subscriber benefits? The biggest benefit for a homelab is “software for dev/test.” What you get depends entirely on how much you shell out for your annual subscription.

	Visual Studio Enterprise
	Basically everything…but it cost $2,999 per year

	Visual Studio Professional
	Limited to Operating Systems and SQL Server for the most part…but costs only $539 per year

Obviously, Enterprise sounds great, but is likely cost prohibitive unless you have a lot of disposable income. It can be tax deductible for those of you that have your own business. For me, the Professional subscription gives me the two most important things, my operating systems and databases. Not only that, it gives you basically every version of both back to the year 2000. What it doesn’t give you is Office. This is a bit of a bummer if you are looking for a catch-all for your homelab and productivity software.

Standard

Standard is different than the cloud subscription in that it comes with a perpetual license. So, if you decide after the first year you are no longer interested, anything you licensed during your first year will still be yours to use. It of course come with a higher price. Here’s the breakout:

	Visual Studio Enterprise
	Basically everything, but for the OMG price of $5,999 for the first year and $2,569 to renew each year after that

	Visual Studio Professional
	Again limited to Operating Systems and SQL Server for the most part, but way more reasonably priced at $1,199 for the first year and $799 to renew each year after that

	Visual Studio Test Professional
	I can’t for the life of me figure out why anyone would want this version…but it’s $2,169 for the first year and $899 to renew each year after that

So…this is expensive. The only real benefit here is that you can continue to use your keys if you choose not to renew each year. Of course, if you like to be bleeding edge, this will probably not work too well after the first 6 months into your next year when someone new comes out that you don’t have. You can find the full Microsoft comparison here and I’ve uploaded a current software matrix here.

Educational Licensing

Beyond the paid options from Microsoft, they also offer educational software for those of you that are students. They have the standard program available through Microsoft Imagine. For a homelab, the Window Server 2016 license would be a great place to start. Many educational institutions have deals with Microsoft beyond Imagine. You can search here to find out if your school has this set up.

Oracle Software

Oracle software is the reason this blog exists. This has always been my primary technology to blog about. So, if you are building a homelab for Oracle software, you might need some Oracle software! I suggest two sites: Edelivery and the Oracle Proactive Support Blog for EPM and BI.

[image:]

eDelivery

eDelivery, for lack of a much better word…sucks. It’s difficult to find exactly what you want, but it does have everything you need, for free. You will need to register for an Oracle account, but once you have one, you should be good to go. You can find eDelivery here.

Patches

What about patches? Patches are a little more tricky. You still need an Oracle account, but generally you will need a support identifier. This can be really simply like using your Oracle account at work or becoming a partner. But, it still isn’t as free as the base software downloads. To make matters worse, finding patches requires an advanced degree in Oracle Support Searching. To make your search easier, Oracle has created a blog that provides updates about patches for EPM and BI software. You can find this blog here.

Backup Software

Now that we have the foundation for our homelab software, what about backing things up? We have a few options here. The best part about this…they are all free. Let’s start with my personal favorite: Veeam.

Veeam Agent

Veeam is the most popular provider of virtual machine backup software out there. But they do more than just virtual machine backup. In fact, they have a free endpoint option. This option backs up both your workstations and servers alike. So if you have physical Windows or Linux Servers or Workstations, Veeam Agent is your best bet for free. You can download is here. Veeam Agent is great, but let’s be honest, the majority of our labs are virutalized. So how do we back those up?

Veeam Availability

Veeam’s primary software set is around virtualization. Veeam offers a variety of products that are built specifically for vmWare ESXi and Microsoft Hyper-V. They have both a free option and a paid option, which is pretty nice. The free option is Veeam Backup and Replication. You can find this product here. But the free option doesn’t do all of the fun things like scheduling. You end up needing PowerShell to automate things. Luckily, in addition to the free option, they also have something called an NFR option.

NFR stands for Not For Resale. Essentially if you go fill out a form, you will get your very own copy of the full solution, Veeam Availability, for free. This has all of the cool features around applications and scheduling. It’s a truly enterprise-class tool for you homelab…for free. You will have to get a new key each year, but it is totally worth the trouble. You can fill out the form here. One last thing…Veeam does require API access to vmWare. So, you need to have a full license of ESXi for this to work.

Nakivo

I’m less familiar with Nakivo, but I wanted to mention another option for backup. Nakivo, like Veeam, offers an NFR license. You can fill out the form here. My understanding is that Nakivo does not use the API, which allows it to work with the free version of ESXi. This is a great benefit for those that doesn’t want to set up a custom solution with lots of moving pieces.

Conclusion

I hope this post can provide a little bit of clarity for the legitimate options out there for homelab software licensing. I personally have a Microsoft Action Pack, VMUG Advantage, and Veeam Availability. I plan to swap out my action pack for Visual Studio Professional when my renewal comes due, as I like having access to older versions of operating systems and SQL Server. Happy homelabbing!

	
		
		
			 Brian Marshall
			 July 10, 2018		
		

			
			
	
	
		

		[image:]		
	Build a Homelab Dashboard: Part 3, Organizr Continued
I know, I know…I promised InfluxDB would be my next post. But, I’ve noticed that Organizr is not quite as straight forward to everyone as I thought. So today we’ll be configuring Organizr and InfluxDB will wait until our next post. Before we continue with configuring Organizr, let’s recap our series so far:

	Part 1, An Introduction
	Part 2, Organizr
	Part 3, Organizr Continued

Configuring Organizr

Organizr is not always the most straight forward tool to configure. Integration with things like Plex requires a bit of knowledge. It doesn’t help of course that V2 is still in beta and the documentation doesn’t actually exist yet. Let’s get started where we left off. Let’s log in:

[image:]

Adding a Homepage

Once logged in, we’re ready to start by adding the homepage to our tabs. Click on Tab Editor:

[image:]

Click on Tabs and you will notice that the homepage tab doesn’t appear on our tabs, so let’s move it around and make it active. While we’re at it we’ll also make it the default. We’ll get into why a little bit later.

[image:]

Add a Tab

Now we can move on to adding the Plex tab. Click the + sign:

[image:]

Give the tab a name, in this case we’ll go with Plex. Provide the URL to your Plex instance. Choose an image, and click Add Tab:

[image:]

Move the Plex tab up, make it active, and select the type of iFrame:

[image:]

The different types are iFrame, Internal, or New Window. Two of these are self-explanatory. iFrame provides the URL directly inside of Organizr. New Window opens a new tab in your browser. The third, internal is for things like the homepage and settings that are built-in functionality in Organizr. Many services works just fine in an iFrame, but some may experience issues. For instance, pfSense doesn’t like being in an iFrame while FreeNAS doesn’t mind at all. There are plenty of other options around groups and categories, but for now we’ll keep things simple.

The Homepage

Now that we know how to add tabs, how do we make our homepage look like this:

[image:]

Getting Plex Tokens

What we see here is one of the main reasons you should consider Organizr. This includes integration with Plex, Sonarr, and Radarr. Let’s start with Plex. Plex has an API that allows external applications like Organizr to integrate. Configuring Plex isn’t all that straight forward unfortunately. We’ll start by going back to our settings page and clicking on System Settings, then Single Sign-On, and finally Plex.

[image:]

We are not trying to enable SSO right now, though you would likely be able to at the end of this guide with a single click. We are just going to use this page as a facility to give us the Plex API Token and the Plex Machine Name. These are required to enable homepage integration. Click on Retrieve under Get Plex Token:

[image:]

Enter your username and password for Plex and click Grab It:

[image:]

Assuming you remember your username and password correctly, you should get a message saying that it was created and you can now click the x to go see it:

[image:]

Now we can click on the little eye to see the Plex token. Copy and paste this somewhere as we will need it later.

[image:]

Next, we’ll click the retrieve button under Get Plex Machine:

[image:]

Choose your Plex Machine that you want to integrate into Organizr:

[image:]

The interesting part here is that it doesn’t actually say it did anything after you make the selection. So just click the x and then we are ready to click the little eye again. This time we will copy and paste the Plex Machine Name:

[image:]

Plex Homepage Integration

Now that we have our Plex tokens, we can configure the homepage integration with Organizr. Click on System Settings, then Tab Editor, followed by Homepage Items, and finally Plex:

[image:]

Start by enabling Plex integration and then click on Connection:

[image:]

Now enter our Plex URL and then refer back to your Plex tokens that you copied and pasted somewhere. Click on Active Streams:

[image:]

Enable active streams and click on Recent Items:

[image:]

Enable recent items and click on Test Connection:

[image:]

Be sure to click Save before finally clicking Test Connection:

[image:]

Assuming everything went well, we should see a message in the bottom right corner that states:

[image:]

Now let’s go take a look at what we get when we reload Organizr:

[image:]

Calendar Integration

Another really cool aspect of Organizr is the consolidated calendar. What does it consolidate? Things like Radarr, Sonarr, and Lidarr. It works much like the calendar on an iPhone or Android device in this way. Today we’ll configure Organizr with Radarr and Sonarr.

Sonarr

We’ll start by going to our Sonarr site and clicking on Settings and then the General tab:

[image:]

Once on the general tab, you should see your API key:

[image:]

As with out Plex token, we’ll copy the API key and paste it somewhere while we go back into Organizr. Back in Organizr, go to settings and click on Tab Editor, then Homepage Items, and finally Sonarr:

[image:]

Click enable and then on the Connection tab:

[image:]

Now enter your Sonarr URL, click Save, and click Test Connection:

[image:]

Click Test Connection:

[image:]

Assuming everything went well, we should see a message in the bottom right corner that states:

[image:]

Now we can reload Organizr and check out our homepage:

[image:]

Excellent! We have a calendar that is linked to Sonarr.

Radarr

Radarr and Sonarr configure exactly the same, so I won’t bore you with the same screenshots with a different logo.

SABnzbd

The last Homepage item we will configure is SABnzbd. Before we configure Organizr, we’ll go get our API key just like Plex, Sonarr, and Radarr. Click on configuration:

[image:]

Click on the General tab:

[image:]

Now we can copy our API Key and paste it somewhere for later:

[image:]

Back in Organizr, go to settings, click Tab Editor, Homepage Items, and finally SABNZBD:

[image:]

Click enable and then click Connection:

[image:]

Enter your SABnzbd URL, your API key, click Save, and then Test Connection:

[image:]

Now click Test Connection:[image:]

Assuming everything went well, we should see a message in the bottom right corner that states:

[image:]

Now let’s reload Organizr and take a look at our homepage:

[image:]

Excellent! Now we can move on to reordering everything the way we want it on the homepage.

Reordering

Go to settings and click on Tab Editor, then Homepage Order. I prefer to have Plex above SABnzbd, so I drag SABnzbd just after Plex:

[image:]

Be sure to click Save and it should look something like this:

[image:]

Finally we can reload Organizr one last time and check it out:

[image:]

Conclusion

And that’s that. We have a barebones Organizr configuration completed and we are ready to move on to InfluxDB (for real this time)! Happy dashboarding!

	
		
		
			 Brian Marshall
			 July 9, 2018		
		

			
			
	
	
		

		[image:]		
	MDXDataCopy: Smart Push for On-Premise
If you attended my recent presentation at Kscope18, I covered this topic and provided a live demonstration of MDXDataCopy. MDXDataCopy provides an excellent method for creating functionality similar to that of Smart Push in PBCS. While my presentation has all of the code that you need to get started, not everyone likes getting things like this out of a PowerPoint and the PowerPoint doesn’t provide 100% of the context that delivering the presentation provides.

Smart Push

In case you have no idea what I’m talking about, Smart Push provides the ability to push data from one cube to another upon form save. This means that I can do a push from BSO to an ASO reporting cube AND map the data at the same time. You can find more information here provided in the Oracle PBCS docs. This is one of the features we’ve been waiting for in On-Premise for a long time. I’ve been fortunate enough to implement this functionality at a couple of client that can’t go to the cloud yet. Let’s see how this is done.

MDXDataCopy

MDXDataCopy is one of the many, many functions included with Calculation Manager. These are essentially CDF’s that are registered with Essbase. As the name implies, it simply uses MDX queries pull data from the source cube and then map it into the target cube. The cool part about this is that it works with ASO perfectly. But, as with many things Oracle, especially on-premise, the documentation isn’t very good. Before we can use MDXDataCopy, we first have some setup to do:

	Generate a CalcMgr encyrption key
	Encrypt your username using that key
	Encrypt your password using that key

Please note that the encryption process we are going through is similar to what we do in MaxL, yet completely different and separate. Why would we want all of our encryption to be consistent anyway? Let’s get started with our encrypting.

Generate Encryption Key

As I mentioned earlier, this is not the same process that we use to encrypt usernames and passwords with MaxL, so go ahead and set your encrypted MaxL processes and ideas to the side before we get started. Next, log into the server where Calculation Manager is installed. For most of us, this will be where Foundation Services happens to also be installed. First we’ll make sure that the Java bin folder is in the path, then we’ll change to our lib directory that contains calcmgrCmdLine.jar, and finally we’ll generate our key:

path e:\Oracle\Middleware\jdk160_35\bin
cd Oracle\Middleware\EPMSystem11R1\common\calcmgr\11.1.2.0\lib
java -jar calcmgrCmdLine.jar –gk

This should generate a key:

[image:]

We’ll copy and paste that key so that we have a copy. We’ll also need it for our next two commands.

Encrypt Your Username and Password

Now that we have our key, we should be ready to encrypt our username and then our password. Here’s the command to encrypt using the key we just generated (obviously your key will be different):

java -jar calcmgrCmdLine.jar -encrypt -key HQMvim5GrSYox7S9bR8jSx admin
java -jar calcmgrCmdLine.jar -encrypt -key HQMvim5GrSYox7S9bR8jSx GetYourOwnPassword

This will produce two keys for us to again copy and paste somewhere so that we can reference them in our calculation script or business rule:

[image:]

Now that we have everything we need from our calculation manager server, we can log out and continue on.

Vision

While not as popular as Sample Basic, the demo application that Hyperion Planning (and PBCS) comes with is great. The application is named Vision and it comes with three BSO Plan Types ready to go. What it doesn’t come with is an ASO Plan Type. I won’t go through the steps here, but I basically created a new ASO Plan Type and added enough members to make my demonstration work. Here are the important parts that we care about (the source and target cubes):

[image:]

Now we need a form so that we have something to attach to. I created two forms, one for the source data entry and one to test and verify that the data successfully copied to the target cube. Our source BSO cube form looks like this:

[image:]

Could it get more basic? I think not. And then for good measure, we have a matching form for the ASO target cube:

[image:]

Still basic…exactly the same as our BSO form. That’s it for changes to our Planning application for now.

Calculation Script

Now that we have our application ready, we can start by building a basic (I’m big on basic today) calculation script to get MDXDataCopy working. Before we get to building the script, let’s take a look at the parameters for our function:

	Key that we just generated
	Username that we just encrypted
	Password that we just encrypted
	Source Essbase Application
	Source Essbase Database
	Target Essbase Application
	Target Essbase Database
	MDX column definition
	MDX row definition
	Source mapping
	Target mapping
	POV for any dimensions in the target, but not the source
	Number of rows to commit
	Log file path

Somewhere buried in that many parameters you might be able to find the meaning of life. Let’s put this to practical use in our calculation script:

RUNJAVA com.hyperion.calcmgr.common.cdf.MDXDataCopy
"HQMvim5GrSYox7S9bR8jSx"
"PnfoEFzjH4P37KrZiNCgd0TMRGSxWoFhbGFJLaP0K72mSoZMCz2ajF9TePp751Dv"
"D44Yplx+Mlj6P2XhGfwvIw4GWHQ5tWOytksR5bToq126xNoPYxWGe3KGlPd56oZ8"
"VisionM"
"Plan1"
"VMASO"
"VMASO"
"{[Jul]}"
"CrossJoin({[No Account]},CrossJoin({[FY16]},CrossJoin({[Forecast]},CrossJoin({[Working]},CrossJoin({[No Entity]},{[No Product]})))))"
""
""
""
"-1"
"e:\\mdxdatacopy.log";

Let’s run down the values used for our parameters:

	HQMvim5GrSYox7S9bR8jSx (Key that we just generated)
	PnfoEFzjH4P37KrZiNCgd0TMRGSxWoFhbGFJLaP0K72mSoZMCz2ajF9TePp751Dv (Username that we just encrypted)
	D44Yplx+Mlj6P2XhGfwvIw4GWHQ5tWOytksR5bToq126xNoPYxWGe3KGlPd56oZ8 (Password that we just encrypted)
	VisionM (Source Essbase Application)
	Plan1 (Source Essbase Database)
	VMASO (Target Essbase Application)
	VMASO (Target Essbase Database)
	{[Jul]} (MDX column definition, in this case just the single member from our form)
	CrossJoin({[No Account]},CrossJoin({[FY16]},CrossJoin({[Forecast]},CrossJoin({[Working]},CrossJoin({[No Entity]},{[No Product]}))))) (MDX row definition, in this case it requires a series of nested crossjoin functions to ensure that all dimensions are represented in either the rows or the columns)
	Blank (Source mapping which is left blank as the two cubes are exactly the same)
	Also Blank (Target mapping which is left blank as the two cubes are exactly the same)
	Also Blank (POV for any dimensions in the target, but not the source which is left blank as the two cubes are exactly the same)
	-1 (Number of rows to commit which is this case is essentially set to commit everything all at once)
	e:\\mdxdatacopy.log (Log file path where we will verify that the data copy actually executed)

The log file is of particular importance as the script will execute with success regardless of the actual result of the script. This means that especially for testing purposes we need to check the file to verify that the copy actually occurred. We’ll have to log into our Essbase server and open the file that we specified. If everything went according to plan, it should look like this:

[image:]

This gives us quite a bit of information:

	The query that was generated based on our row and column specifications
	The user that was used to execute the query
	The source and target applications and databases
	The rows to commit
	The query and copy execution times
	And the actual data that was copied

If you have an error, it will show up in this file as well. We can see that our copy was successful. For my demo at Kscope18, I just attached this calculation script to the form. This works and shows us the data movement using the two forms. Let’s go back to Vision and give it a go.

Back to Vision

The last step to making this fully functional is to attach our newly created calculation script to our form. Notice that we’ve added the calculation script and set it to run on save:

[image:]

Now we can test it out. Let’s change our data:

[image:]

Once we save the data, we should see it execute the script:

[image:]

Now we can open our ASO form and we should see the same data:

[image:]

The numbers match! Let’s check the log file just to be safe:

[image:]

The copy looks good here, as expected. Our numbers did match after all.

Conclusion

Obviously this is a proof of concept. To make this production ready, you would likely want to use a business rule so that you can get context from the form for your data copy. There are however some limitations compared to PBCS. For instance, I can get context for anything that is a variable or a form selection in the page, but I can’t get context from the grid itself. So I need to know what my rows and columns are and hard-code that. You could use some variables for some of this, but at the end of the day, you may just need a script or rule for each form that you with to enable Smart Push on. Not exactly the most elegant solution, but not terrible either. After all, how often do your forms really change?

	
		
		
			 Brian Marshall
			 July 8, 2018		
		

			
			
	
	
		

		1
2
3
…
15
	

	
	

				
					Search for:
					
					
				

			

			[image:]

		
Archives

				August 2018 (3)
	July 2018 (8)
	June 2018 (4)
	March 2018 (1)
	January 2018 (1)
	October 2017 (2)
	August 2017 (1)
	July 2017 (7)
	June 2017 (7)
	March 2017 (1)
	February 2017 (1)
	January 2017 (6)
	November 2016 (3)
	October 2016 (4)
	September 2016 (7)
	August 2016 (8)
	July 2016 (8)
	June 2016 (8)
	May 2016 (6)
	April 2016 (9)
	March 2016 (12)
	February 2016 (14)
	January 2016 (4)
	November 2015 (1)
	September 2015 (4)
	August 2015 (4)
	July 2015 (3)
	June 2015 (2)
	March 2015 (1)
	February 2015 (3)
	January 2015 (2)

			
Categories

				11.1.2.3 (1)

	11.1.2.4 (8)

	Around the Lab (1)

	Drillbridge (4)

	EPM Month In Review (3)

	EPM Week In Review (38)

	Essbase ASO (4)

	EssBench (1)

	FreeNAS (4)

	Hybrid Essbase (1)

	Hyperion Essbase (16)

	Hyperion Home Lab (23)

	Hyperion Planning (23)

	Kscope (9)

	Oracle Database (1)

	PBCS (6)

	Planning Repository (14)

	PowerShell (5)

	Random Tip (1)

	Site Updates (1)

	Uncategorized (24)

			
Meta

			Log in
	Entries feed
	Comments feed
	WordPress.org

		

		
	
		
			
				
					© EPM Marshall

									

				
					Franklin Theme

				

			

		

	

